Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(1): 101183, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38282895

RESUMO

Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a monogenic disorder caused by mutations in the FOXP3 gene, required for generation of regulatory T (Treg) cells. Loss of Treg cells leads to immune dysregulation characterized by multi-organ autoimmunity and early mortality. Hematopoietic stem cell (HSC) transplantation can be curative, but success is limited by autoimmune complications, donor availability and/or graft-vs.-host disease. Correction of FOXP3 in autologous HSC utilizing a homology-directed repair (HDR)-based platform may provide a safer alternative therapy. Here, we demonstrate efficient editing of FOXP3 utilizing co-delivery of Cas9 ribonucleoprotein complexes and adeno-associated viral vectors to achieve HDR rates of >40% in vitro using mobilized CD34+ cells from multiple donors. Using this approach to deliver either a GFP or a FOXP3 cDNA donor cassette, we demonstrate sustained bone marrow engraftment of approximately 10% of HDR-edited cells in immune-deficient recipient mice at 16 weeks post-transplant. Further, we show targeted integration of FOXP3 cDNA in CD34+ cells from an IPEX patient and expression of the introduced FOXP3 transcript in gene-edited primary T cells from both healthy individuals and IPEX patients. Our combined findings suggest that refinement of this approach is likely to provide future clinical benefit in IPEX.

2.
Sci Transl Med ; 14(665): eabn1716, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197963

RESUMO

Adoptive transfer of regulatory T cells (Tregs) is therapeutic in type 1 diabetes (T1D) mouse models. Tregs that are specific for pancreatic islets are more potent than polyclonal Tregs in preventing disease. However, the frequency of antigen-specific natural Tregs is extremely low, and ex vivo expansion may destabilize Tregs, leading to an effector phenotype. Here, we generated durable, antigen-specific engineered Tregs (EngTregs) from primary human CD4+ T cells by combining FOXP3 homology-directed repair editing and lentiviral T cell receptor (TCR) delivery. Using TCRs derived from clonally expanded CD4+ T cells isolated from patients with T1D, we generated islet-specific EngTregs that suppressed effector T cell (Teff) proliferation and cytokine production. EngTregs suppressed Teffs recognizing the same islet antigen in addition to bystander Teffs recognizing other islet antigens through production of soluble mediators and both direct and indirect mechanisms. Adoptively transferred murine islet-specific EngTregs homed to the pancreas and blocked diabetes triggered by islet-specific Teffs or diabetogenic polyclonal Teffs in recipient mice. These data demonstrate the potential of antigen-specific EngTregs as a targeted therapy for preventing T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Animais , Citocinas , Diabetes Mellitus Tipo 1/genética , Fatores de Transcrição Forkhead , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T , Linfócitos T Reguladores
3.
Sci Transl Med ; 12(546)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493794

RESUMO

Thymic regulatory T cells (tTregs) are potent inhibitors of autoreactive immune responses, and loss of tTreg function results in fatal autoimmune disease. Defects in tTreg number or function are also implicated in multiple autoimmune diseases, leading to growing interest in use of Treg as cell therapies to establish immune tolerance. Because tTregs are present at low numbers in circulating blood and may be challenging to purify and expand and also inherently defective in some subjects, we designed an alternative strategy to create autologous Treg-like cells from bulk CD4+ T cells. We used homology-directed repair (HDR)-based gene editing to enforce expression of FOXP3, the master transcription factor for tTreg Targeted insertion of a robust enhancer/promoter proximal to the first coding exon bypassed epigenetic silencing, permitting stable and robust expression of endogenous FOXP3. HDR-edited T cells, edTregs, manifested a transcriptional program leading to sustained expression of canonical markers and suppressive activity of tTreg Both human and murine edTregs mediated immunosuppression in vivo in models of inflammatory disease. Further, this engineering strategy permitted generation of antigen-specific edTreg with robust in vitro and in vivo functional activity. Last, edTreg could be enriched and expanded at scale using clinically relevant methods. Together, these findings suggest that edTreg production may permit broad future clinical application.


Assuntos
Fatores de Transcrição Forkhead , Edição de Genes , Animais , Fatores de Transcrição Forkhead/genética , Humanos , Tolerância Imunológica , Camundongos , Fenótipo , Linfócitos T Reguladores
4.
Mol Ther Methods Clin Dev ; 4: 192-203, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28345004

RESUMO

Gene editing by homology-directed recombination (HDR) can be used to couple delivery of a therapeutic gene cassette with targeted genomic modifications to generate engineered human T cells with clinically useful profiles. Here, we explore the functionality of therapeutic cassettes delivered by these means and test the flexibility of this approach to clinically relevant alleles. Because CCR5-negative T cells are resistant to HIV-1 infection, CCR5-negative anti-CD19 chimeric antigen receptor (CAR) T cells could be used to treat patients with HIV-associated B cell malignancies. We show that targeted delivery of an anti-CD19 CAR cassette to the CCR5 locus using a recombinant AAV homology template and an engineered megaTAL nuclease results in T cells that are functionally equivalent, in both in vitro and in vivo tumor models, to CAR T cells generated by random integration using lentiviral delivery. With the goal of developing off-the-shelf CAR T cell therapies, we next targeted CARs to the T cell receptor alpha constant (TRAC) locus by HDR, producing TCR-negative anti-CD19 CAR and anti-B cell maturation antigen (BCMA) CAR T cells. These novel cell products exhibited in vitro cytolytic activity against both tumor cell lines and primary cell targets. Our combined results indicate that high-efficiency HDR delivery of therapeutic genes may provide a flexible and robust method that can extend the clinical utility of cell therapeutics.

5.
Genes Dev ; 30(7): 798-811, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27013234

RESUMO

Cell-cell adhesion protein αE-catenin inhibits skin squamous cell carcinoma (SCC) development; however, the mechanisms responsible for this function are not completely understood. We report here that αE-catenin inhibits ß4 integrin-mediated activation of SRC tyrosine kinase.SRCis the first discovered oncogene, but the protein substrate critical for SRC-mediated transformation has not been identified. We found that YAP1, the pivotal effector of the Hippo signaling pathway, is a direct SRC phosphorylation target, and YAP1 phosphorylation at three sites in its transcription activation domain is necessary for SRC-YAP1-mediated transformation. We uncovered a marked increase in this YAP1 phosphorylation in human and mouse SCC tumors with low/negative expression of αE-catenin. We demonstrate that the tumor suppressor function of αE-catenin involves negative regulation of the ß4 integrin-SRC signaling pathway and that SRC-mediated phosphorylation and activation of YAP1 are an alternative to the canonical Hippo signaling pathway that directly connect oncogenic tyrosine kinase signaling with YAP1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Escamosas/fisiopatologia , Proteína Oncogênica pp60(v-src)/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , alfa Catenina/metabolismo , Animais , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/genética , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/citologia , Queratinócitos/patologia , Camundongos , Fosforilação , Transporte Proteico , Proteínas de Sinalização YAP
6.
J Biol Chem ; 290(19): 12300-12, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25833945

RESUMO

The DNA end resection process dictates the cellular response to DNA double strand break damage and is essential for genome maintenance. Although insufficient DNA resection hinders homology-directed repair and ATR (ataxia telangiectasia and Rad3 related)-dependent checkpoint activation, overresection produces excessive single-stranded DNA that could lead to genomic instability. However, the mechanisms controlling DNA end resection are poorly understood. Here we show that the major resection nuclease Exo1 is regulated both positively and negatively by protein-protein interactions to ensure a proper level of DNA resection. We have shown previously that the sliding DNA clamp proliferating cell nuclear antigen (PCNA) associates with the C-terminal domain of Exo1 and promotes Exo1 damage association and DNA resection. In this report, we show that 14-3-3 proteins interact with a central region of Exo1 and negatively regulate Exo1 damage recruitment and subsequent resection. 14-3-3s limit Exo1 damage association, at least in part, by suppressing its association with PCNA. Disruption of the Exo1 interaction with 14-3-3 proteins results in elevated sensitivity of cells to DNA damage. Unlike Exo1, the Dna2 resection pathway is apparently not regulated by PCNA and 14-3-3s. Our results provide critical insights into the mechanism and regulation of the DNA end resection process and may have implications for cancer treatment.


Assuntos
Proteínas 14-3-3/metabolismo , Quebras de DNA de Cadeia Dupla , Exodesoxirribonucleases/metabolismo , Regulação da Expressão Gênica , Antígeno Nuclear de Célula em Proliferação/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular , DNA/genética , Reparo do DNA , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Xenopus
7.
J Biol Chem ; 290(24): 15133-45, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25922071

RESUMO

The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer.


Assuntos
Endonucleases Flap/metabolismo , Telômero , Western Blotting , Dano ao DNA , Replicação do DNA , Endonucleases Flap/genética , Células HEK293 , Humanos , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
8.
J Biol Chem ; 287(26): 21980-91, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22570476

RESUMO

Dna2 is an essential helicase/nuclease that is postulated to cleave long DNA flaps that escape FEN1 activity during Okazaki fragment (OF) maturation in yeast. We previously demonstrated that the human Dna2 orthologue (hDna2) localizes to the nucleus and contributes to genomic stability. Here we investigated the role hDna2 plays in DNA replication. We show that Dna2 associates with the replisome protein And-1 in a cell cycle-dependent manner. Depletion of hDna2 resulted in S/G(2) phase-specific DNA damage as evidenced by increased γ-H2AX, replication protein A foci, and Chk1 kinase phosphorylation, a readout for activation of the ATR-mediated S phase checkpoint. In addition, we observed reduced origin firing in hDna2-depleted cells consistent with Chk1 activation. We next examined the impact of hDna2 on OF maturation and replication fork progression in human cells. As expected, FEN1 depletion led to a significant reduction in OF maturation. Strikingly, the reduction in OF maturation had no impact on replication fork progression, indicating that fork movement is not tightly coupled to lagging strand maturation. Analysis of hDna2-depleted cells failed to reveal a defect in OF maturation or replication fork progression. Prior work in yeast demonstrated that ectopic expression of FEN1 rescues Dna2 defects. In contrast, we found that FEN1 expression in hDna2-depleted cells failed to rescue genomic instability. These findings suggest that the genomic instability observed in hDna2-depleted cells does not arise from defective OF maturation and that hDna2 plays a role in DNA replication that is distinct from FEN1 and OF maturation.


Assuntos
DNA Helicases/fisiologia , Replicação do DNA , DNA , Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/metabolismo , DNA/química , Dano ao DNA , DNA Helicases/química , Reparo do DNA , Regulação da Expressão Gênica , Células HeLa , Humanos , Cinética , Testes para Micronúcleos , Microscopia de Fluorescência/métodos
9.
Cancer Cell ; 13(1): 36-47, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18167338

RESUMO

The Cdc25A phosphatase positively regulates cell-cycle transitions, is degraded by the proteosome throughout interphase and in response to stress, and is overproduced in human cancers. The kinases targeting Cdc25A for proteolysis during early cell-cycle phases have not been identified, and mechanistic insight into the cause of Cdc25A overproduction in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3beta (GSK-3beta) phosphorylates Cdc25A to promote its proteolysis in early cell-cycle phases. Phosphorylation by GSK-3beta requires priming of Cdc25A, and this can be catalyzed by polo-like kinase 3 (Plk-3). Importantly, a strong correlation between Cdc25A overproduction and GSK-3beta inactivation was observed in human tumor tissues, indicating that GSK-3beta inactivation may account for Cdc25A overproduction in a subset of human tumors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Neoplasias/enzimologia , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo , Fosfatases cdc25/metabolismo , Animais , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Ativação Enzimática/efeitos da radiação , Estabilidade Enzimática/efeitos da radiação , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos da radiação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Ligação Proteica/efeitos da radiação , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional/efeitos da radiação , Radiação Ionizante , Proteínas Contendo Repetições de beta-Transducina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...